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Nonlinear theory of surface-wave—particle interactions in a cylindrical plasma
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This work is an application of the specular reflection hypothesis to the study of the nonlinear
surface-wave—particle interactions in a cylindrical plasma. The model is based on nonlinear resolu-
tion of the Vlasov equation by the method of characteristics. The expression obtained for the rate
of increase of kinetic energy per electron has permitted us to investigate the temporal behavior of
nonlinear collisionless damping for different situations as a function of the critical parameters.

PACS number(s): 52.40.Db, 52.25.Dg

I. INTRODUCTION

In the last few years, great interest has been aroused
in the study of surface-wave—particle propagation along
a cylindrical plasma column. Early works by Trivelpiece
and Gould [1,2] disclosed the propagation modes when a
plasma is of finite transverse cross section, in the quasi-
static approximation. In recent years most attention has
been directed at the properties of the surface-wave sus-
tained plasmas [3—-6]. The principal properties and ap-
plications of this kind of plasma have been reviewed by
Moisan and co-workers [7,8]. Prior to this paper [9] a the-
oretical model to analyze the linear surface-wave—particle
interaction was developed. This model was based on the
linear resolution of the Vlasov equation, with the spec-
ular reflection hypothesis. It is the purpose of this pa-
per to provide a theoretical discussion of the nonlinear
perturbation of the distribution function of a cylindrical
plasma which is the support of a surface wave (Secs. III-
IV). The knowledge of this distribution function permits
us to calculate the nonlinear rate of increase of the ki-
netic energy per electron for collisionless damping (Sec.
V). In Sec. II we briefly review the general theoreti-
cal considerations of surface-wave propagation along the
cylindrical plasma. The paper concludes with a summary
and conclusions (Sec. VI).

II. BASIC ASSUMPTIONS

Figure 1 shows the conventional scheme to obtain the
propagating modes. The plasma tube is surrounded by
a cylindrical metallic waveguide enclosing it completely.
With regard to the wave, the plasma is a dielectric
medium of permittivity e,

w1 (%) 8

where wp, is the electron plasma angular frequency and
w is the wave angular frequency. The wave vector is
directed parallel to the plasma column, whose axis coin-
cides with the 2 direction.
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The fields in the plasma (0 < r < a) are given by the
expressions [10]

E, = Eo,(r) sin(wt — B2), (2)
E, = Eo.(r) sin(wt — B2), 3)
By = Byy(r) sin(wt — Bz), )
,B aEOz wEe anz
B = BI(r), B = 5202, By = 20
(5)

where I is the zeroth-order modified Bessel function, ¢
is the speed of light in vacuum, and I' is obtained from

2
r2=p - (2) e (6)
c

The numerical results given in the following sections
are computed for values of the dielectric permittivity,
tube radius and thickness, metallic waveguide radius
given in the caption to Fig. 1, and a frequency of 210

e
N

FIG. 1. Scheme employed: ¢, = 4, a=3 mm, =8 mm, and
d=40 mm.
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FIG. 2. Dispersion relation of the azimuthally symmetric
surface wave propagating over a cylindrical plasma column,
computed for the scheme given in Fig. 1 and for 210 MHz.
The dashed line is the limiting value obtained when 8 — oo.

MHz. Figure 2 shows the variation of Ba (a is the tube ra-
dius) as a function of w/w, for 210 MHz; the dashed line
represents the asymptotic value of w/wj, as 8 approaches
infinity [w/wp — 1/(1 + €4)'/?]. We have chosen these
numerical values because they are usual values in the ex-
periences with rf surface-wave discharges, nevertheless,
this model can be applied to other conditions.

III. SOLUTION OF THE VLASOV EQUATION

If discrete particle correlations are negligible, the elec-
tron distribution f (7, ¥, t) evolves according to the Vlasov
equation, which may be expressed by

7] 7] e = 5 0
5= - = g .= Fat) = 7
(6t+'U o m(E+'U><B) 61.).)f(rav9) 0’ ()
where e and m are the charge and the mass of the electron
and the fields are given by (2)—(4).

Let f = fo + f1, where fo is the unperturbed part of
the distribution and f; is the perturbation caused by the
surface wave. Equation (7) can be approximated by its
linearized version

Of . 0fi e, a.. = 9fo
“g"‘”‘g—;(E*’UXB)aU. (8)

This equation may be solved by the method of char-
acteristics [11] with the specular reflection hypothesis at
the surrounding glass tube [9]. We obtain the following
expression for f;:

f1(7,7,t) = g1(¥) cos B(z — v,t)
+-1‘i— Fol(Tye + T'24) cos B(z — vst)
+(Trs + T2e)]sin B(z — v,t), (9)

t
(7, 0,t) = / dtoE;(ro)vei sin(w — Bv;)to,
0

t
(7, 7,t) = / dtoE;(ro)vesi cos(w — Bv,)to,
o
(10)

where g;(?¥) is an arbitrary function of the velocity, and

7o and v, are the particle orbits, in absence of fields,

which are taken to satisfy

To(to =t) =7, Uo(to =t) = . (11)

If we call tpx the time at which the breakdown time of
the linear solution occurs, we can obtain that [9]

m \Y2_
tbk=(eﬂ—E) A, (12)

where A is a function of the electron temperature and
the w/wy, shown in Fig. 3.

We can extend the theory of collisionless damping to
times greater than t,. To see that, we rewrite (7) in the
form

d ., . o
Et‘"f("o(to), ¥(to),t0) = O, (13)
0
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FIG. 3. Radial average of A as a function of electron tem-
perature for several values of w/wp.



50 NONLINEAR THEORY OF SURFACE-WAVE-PARTICLE. .. 489

where 7(to) and vo(to) are the particle orbits in the elec-
tromagnetic field,

mio = _C(Ez - vOrBdt)’ (14)
. 12 a¢wall

mrg = Er—g — e(E,. - vOzB¢) - 81'0 ) (15)

mrovoy = |l = const, (16)

where ¢yan is the electron-wall interaction potential of
the surrounding glass tube and ! is the angular momen-
tum of the electron. We suppose that the wall is in-
sulated and becomes negatively charged, owing to the
greater mobility of the electrons. The orbits 7o(¢¢) and
Uo(to) are taken to satisfy
Fo(to = t) = ’F, Uo(to = t) = ’l-}' (17)
Equation (13) simply states that f is a constant fol-
lowing the particle trajectories, and may be integrated
to give

f (70,0, to) = const. (18)

Evaluating this equation at t; = ¢t and tp = 0 and
making use of (17) we obtain

f(7,0,t) = f(Fo(to = 0),Vo(to = 0),t0 =0).  (19)
From (9) it follows that the initial distribution can be

written as

F(Fo(to = 0),o(to = 0),to = 0)

= fo('l_l'o(to = 0)) + gl(’l-)‘o(to = 0)) COSs ﬂZQ(tQ). (20)

Therefore the solution of the Vlasov equation is re-
duced to the determination of 7o(to = 0) and @y (to = 0)
from (14)—(17).

IV. ELECTRON DYNAMICS

For the conditions studied in this paper it is readily
verified that Byvin/E, < 1 and Byven/E, < 1, where
v¢n is the thermal velocity. Therefore (14) and (15) may
be expressed by

mzy = —eEIo(I're) sin(wto — B2p), (21)
12 eBE

mrg = —5 —

3
mrg r

I (T'ro) cos(wto — Bzo) — QgT‘:E,
(22)

where I is the first-order modified Bessel function.
Transforming to the wave frame, we introduce the new
independent variables 2z and vp,,

29 =20 —wto /B —7/B, vy, = vo, —w/B. (23)
Equations (21) and (22) will be expressed as

mzy = —eEIy(T'ro) sin Bz}, (24)

12 eﬂE 8¢wa.ll

. _ I°  efE 1 _ O¢wan
mig = mr3 T I,(T'ro) cos Bzg Bre

(25)

In the linear model [9] we found that the specular re-
flection implies that the electron exhibits a radial peri-
odic motion of period T, which may be expressed as

T =2(a® — 02)Y?Jv;, o =vgr/vy,
vi = (v} +v3)Y?, (26)

where a is the tube radius. The functions Iy and I; may
be expressed as a Fourier series. For the present purposes
these functions can be approximated in (24) and (25) by
the first term (n = 0) of the series

1 (7 1 7
Xg = —/ Io(r’l‘o)dto, X1 = —/ Il(r’l'o)dto. (27)
T Jo T Jo

The integrations are computed along the unperturbed
trajectory in the field-free equilibrium. The contribution
for n > 0 is always less than 15% of the approximation
n =0 [9].

Therefore (24) may be expressed in the form

mzy = —eE X, sin Bz,. (28)

This equation coincides formally with the unidimen-
sional motion equation for an electron in the presence of
a purely sinusoidal traveling wave [12].

Defining the axial trapping time 7 according to

m 1/2
T= (eﬁEXo) ' (29)

Eq. (28) may be integrated once to give

. 1 .
P2 = W(l — 6% sin® 9y), (30)
where

1, 2 2eEXo/B

Yo=3P O B X (31)

The case W, > eEXo/B (62 < 1) corresponds to
the axial untrapped electron orbits and the case W) <
eEX,/B (6% > 1) corresponds to the axial trapped elec-
tron orbits.

The solution (30) may be obtained in terms of the el-
liptic integral F'(o; 6) [13]. The orbit quadrature gives

(to — t)/6T = F(v0;0) — F(¥;8) (6% < 1), (32)
(to —t)/67 = F(ao;1/8) — F(o;1/8) (8% > 1), (33)
where

sin ap = 4 sin o,

P = Po(to =t),

o = ao(to = £) = sin~* (3 sin ). (34)
According to (32) and (33) we obtain

sinto = sn u< (6% < 1), (35)

sin = %sn us (6% > 1), (36)
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with

uc = (to —t)/67 + F(4;9), (37)
us = (to —t)/7 + F(a;1/6), (38)

where sn is a Jacobian elliptic function [13]. The radial
evolution of the electron may be expressed in the form

ad’w&ll

2
! eEﬁXl Ccos ,626 - ——6? (39)

mip = —g —

mry T

We note that (12/mr)/(eEBX,/T) <« 1/(wT)?. The
implications of this result are significant. By neglecting
terms down by an order of 1/w7, we find for the radial
evolution the same equation obtained in the linear analy-
sis [9]. Therefore, in this approximation the electron will
exhibit a radial periodic motion of period T, ~ a/v,,
where a is the tube radius and v, is the transversal ve-
locity.

The inequality 1/wT < 1 determines the range of val-
ues of E. It follows that E <« mw?/ef (~ 10* V/m for
the conditions given in Sec. II).

V. DERIVATION OF THE NONLINEAR
COLLISIONLESS DAMPING

To obtain the rate of increase of kinetic energy, we need

O0f /0t where f is given in (20),

Of _0fo 0V, O 97y r 207 o
5t 61)0 ot + a5, ot cos Bz5 — g1 ot sin Bz,

(40)

where z{ = zj(to = 0) and ¥ = j(to = 0). It is readily
verified that 82(/8t; = —vj,; then (40) may be rewritten

af afO / 6% s !

= ((_9._1; + 3"’ os Bz, 3 91Pvg, sin Bzy. (41)
By neglecting terms down by an order of 1/w7r we can
write (41) as

a oy
of _ 9@ Lo, (42)
ot ov, Ot

To find the rate of absorbed wave energy per electron
via collisionless damping, one first calculates the rate of
increase of kinetic energy,

BW,, _ m / aqu (43)
The rate of increase of kinetic energy per electron, 8, will
be
1 /W,

where ng is the electron density and W, /8t is averaged
on the wavelength .
Substituting (42) and (43) into (44) and making use of

the results obtained in Sec. IV, we may then obtain the
following expression for 6:

A/2
0(r,t) = E2/ dz /dvldv v, sin B2{(to = 0),

/2
(45)
where the function ®, is defined as
16e2 , (2nT.\ /? mul,
q’l-‘m”vh( ™ P\ =T,
2 mvi
xXgsexp | — oT, ) (46)

with vpp = w/pB.

To solve (45) we parallel the analysis of O’Neil [12] and
make use of the independent variables (1,5). Equation
(45) reduces to

O(r,t) = E2/dﬁL<I>1<I>2, (47)
with

1 dé /2 ]
P, = / 6—3/ di sin 29po(to = 0)
0 0

o 48 sin~'(1/4) .
+/; = /0 dip sin 2¢0(to = 0). (48)

By using the double angle formula of the Jacobi el-
liptic functions and expressing the integrands as series
expansions in terms of the parameter ¢ = e™X'/K and
the arguments v = n/2Ké§7 and vs = 7/2KT7 [13] we
obtain

2nn? sin 2nvt
K2 (1+¢)(1+4¢72")

ZZW/

n=0

(2n + 1)m?6sin(2n + UN) (49)

K2(1 + q2n+1)(1 + q—2n—1)

where K = F(r/2;6) and K' = F(w/2;(1 — §%)1/2).

It is useful to compare expression (47) with the result
obtained in the lineal model [9], 0, for t <« 7. Figure 4
shows the radial variation of 6/6;.

We consider the expression for the nonlinear damping
coefficient v (y = NG/U where U is the total energy, N
is the number of electrons, and 8 is the radial average
of ). For t « 7 one can show that this reduces to the
linear coefficient; this one is shown in Fig. 5. For t > 7
the integration in (47) causes the fast oscillation to phase
mix to zero, then

v—0 (t — o00). (50)

In addition it may be shown that the integral damping

coefficient © may be expressed as
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FIG. 4. Radial dependence of 6/60. for several values of
w/wp.

o 64 m \?
e = /(; ~(t) dt = ?Cn (EEE) L, (51)

where ~;, is the linear damping coefficient, the function
7 is shown in Fig. 6 for several values of w/wp, and ¢ is
shown to have the value

7,/
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FIG. 5. Ratio yr/w as a function of the ratio of phase
velocity to thermal velocity.

FIG. 6. Dependence of 1 as a function of w/wy.

C=/01d6[5l4(§—£‘;)+g[E+(62—1)K] ,

(52)

where it is expressed as a function of the complete elliptic
integrals of the first and second kinds [12]. The function
7 is independent of the electron temperature under the
conditions studied in this paper.

It follows from (51) that ©® ~ O(tpkyL), consequently,
the amplitude of the electric field E will be constant un-
der the condition tpxyr < 1. This condition is satisfied
as we saw in the analysis of the electron radial motion in
Sec. IV.

VI. CONCLUSIONS

In this paper the nonlinear surface-wave—particle in-
teractions in a cylindrical plasma are analysed, using
the specular reflection hypothesis in the resolution of the
Vlasov equation. An expression for the nonlinear colli-
sionless damping coefficient has been obtained as a func-
tion of the critical parameters. For t < tpx (breakdown
time of the linear solution) this coefficient reduces to a
linear result and it is zero as t approaches infinity. The
integral damping coefficient © has also been calculated
and it was shown that ©® ~ O(tpkyr). It follows from
this result that the change in the amplitude of the elec-
tric field is small since tpxyz < 1. Then we may conclude
from this analysis that, under appropriate conditions, the
collisionless damping must be taken into account in the
surface-wave propagation along a cylindrical plasma col-
umn.
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